

Class Objectives

- □ Discuss Proper Tools & Test Methods
- □ Cover Sensor Types and Common **Applications**
- Consider Sensor Locations and Access
- **☐** Review Types of Sensor Faults and Codes

Proper Tooling

Accurate sensor testing, leading to conclusive results, requires the correct tool(s) for the job!

The goal is diagnostic accuracy and efficiency!

Why?

Proper Tooling

Essentials:

- DVOM/DMM still has value but limited in this subject
- Graphing MM can be used in many cases but not all
- Oscilloscope today is irreplaceable
- Terminal adapters for pin fitment testing and circuit testing
- Backprobes/Piercing probes for proper circuit connection
- Circuit loading devices such as an incandescent bulb

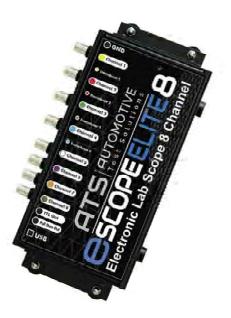
DVOM/Digital MultiMeter

- □ DMM's are not fit for fast changing signals (3 to 4 times per second updates)
- □ Displayed values are averages

Graphing MultiMeter

- ☐ GMM's function like a scope with lower sample rates
- □ Resolution is too low to display an active sensor waveform
- □ Useful during static circuit testing

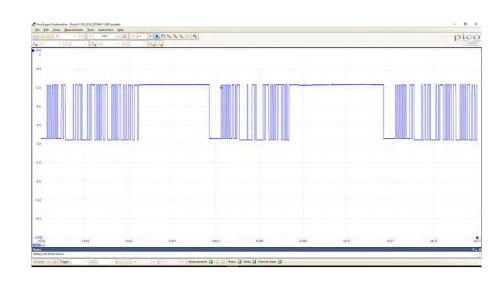
Oscilloscope/Lab Scope



Whether you have a 1, 2, 4, or 8 channel scope, the challenge for many is simply adapting it into your workplace

Oscilloscope/Lab Scope

- Many say "it takes too long to set up"
- ☐ This would be true until you familiarize yourself with the equipment



Oscilloscope/Lab Scope

□ A scope provides more information than a multimeter

□ A low amp probe may be of use for complete sensor testing

Terminal Adapters

Terminal adapters allow checking of pin to socket interference easily and accurately.

The easiest way to check pin fit (drag) is by using new male/female terminals to check the circuits' mating pins.

Circuit Loading

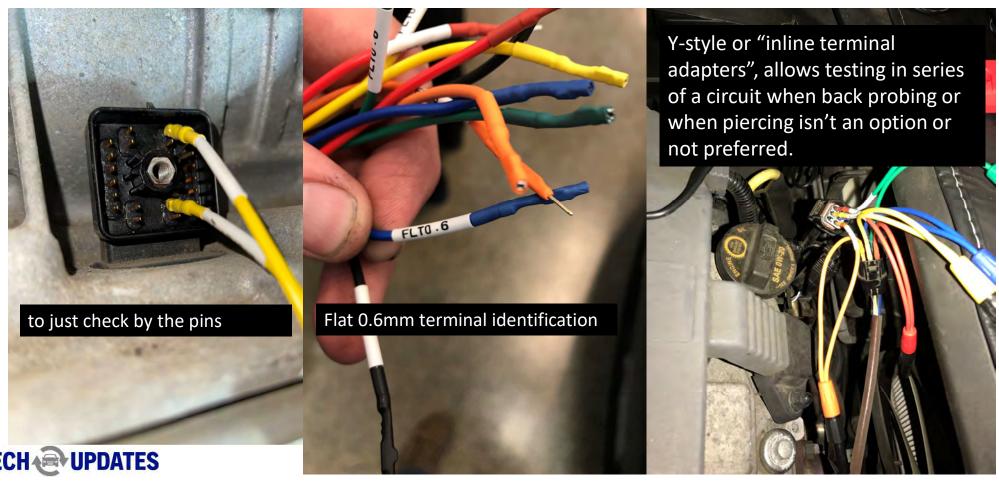
- ☐ Circuit loading tooling allows you to provide a fixed max current into a circuit to check circuit integrity
- ☐ An example would be an incandescent test bulb
- ☐ If max current of the bulb is 150 mA with 12v applied but you're loading a circuit and the light glows dim, then this is a visible indicator of an issue
- When used properly, these are invaluable

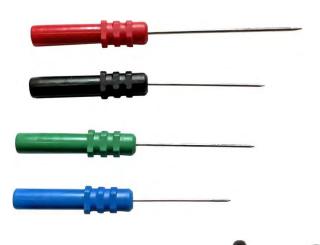
Circuit Loading

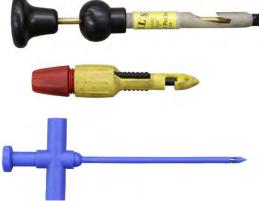
- □ A circuit loading tool can be used to check circuit integrity
- □ A low-current test-lamp (not an LED) can be used to pull a 5v signal up or down

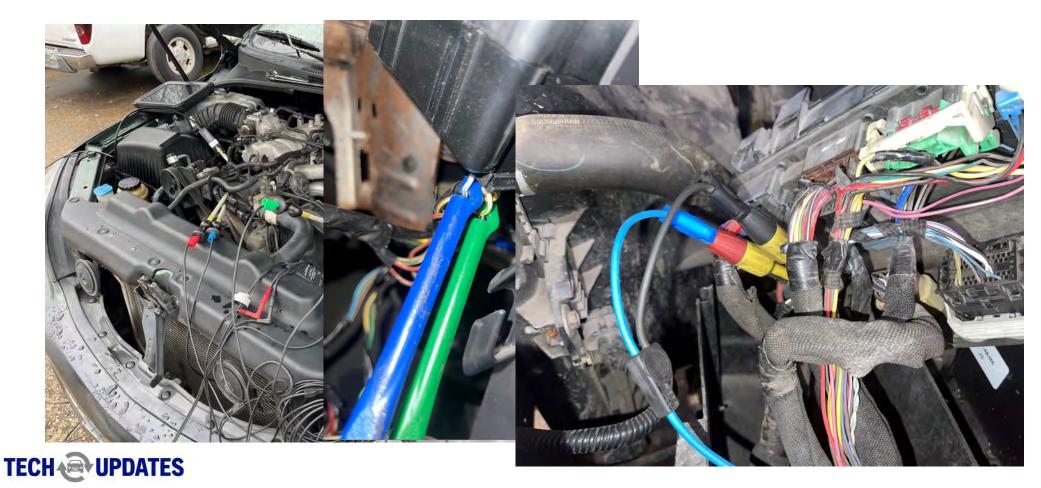
Circuit Loading

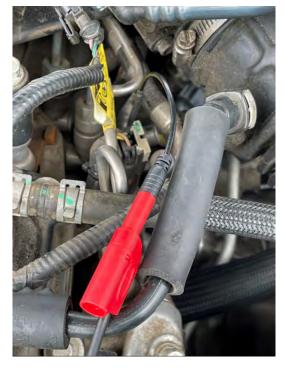
- □ This MAF has a fused 12v feed, 2 sensor grounds and 1 MAF signal circuit
- ☐ Here load testing the B+ circuit for the MAF

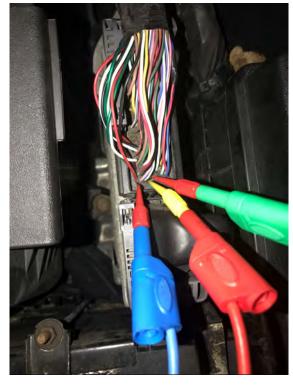



Terminal Adapter use




When used properly, harness and connector/terminal integrity will remain unaltered when using either a backprobe or a piercing probe



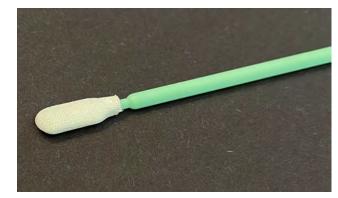


Here some common backprobes and applications

- □ Back-probing is not an option for some connector designs
- □ Some connectors do not allow enough space for the probing needle
- □ Terminal damage can result on some designs (BMW MQS style connectors are an example)

MQS Micro Terminal
DO NOT BACKPROBE

- Never perform backprobing or piercing on any shielded, multiconductor, or coaxial harness/cabling
- ☐ If performed, that harness/cable must be replaced!
- Multi-conductor cables can be tested at connector terminal



- □ Always seal punctures to prevent water intrusion and future corrosion
- ☐ Liquid electrical tape is a great solution
- □ Apply sparingly (lint-free swabs work well)
- □ Product is only needed to seal the hole(s), so a large glob is unneeded
- □ Clear gel-type nail polish can be used but must be cured with a UV-light, and remains flexible after curing

What is a sensor? What does it do?

Sensor Types and Common Applications

☐ Let's Discuss:

- How many automotive sensor types exist?
- How do they operate?
- What are there designs and element types?
- Where are they used?

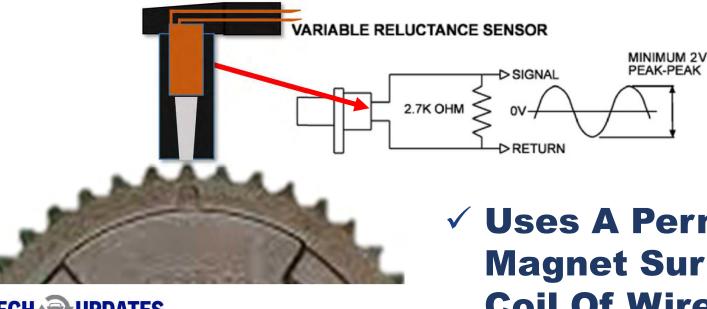
Sensor Types

- **□ VRS**
- Magneto-Resistive
- □ PTC/NTC Resistor
- □ Potentiometer
- □ Rheostat
- □ Zirconia
- □ Thermocouple

- □ Piezo
- ☐ Capacitive and Strain
 - gauge
- □ Frequency

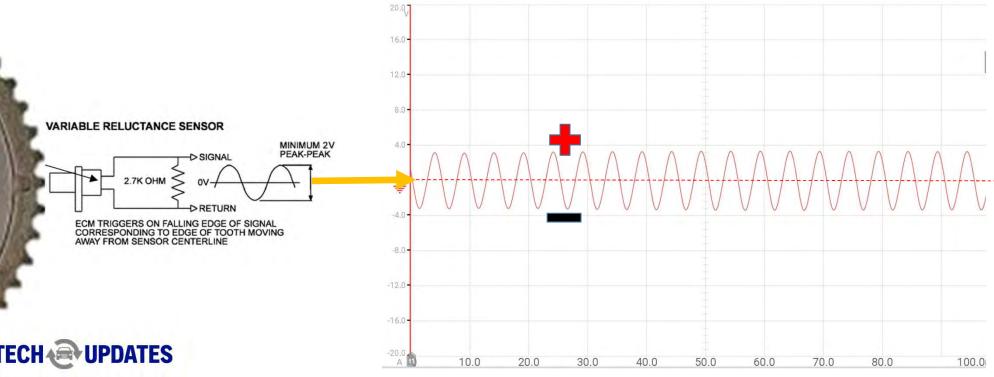
VRS – Variable Reluctance Sensor

- □ Produces an AC sine wave
- □ Sensitive to air gap, resistance, and counter-magnetism
- Not reliant on supply voltage from module to work
- □ Output voltage is proportional to signal frequency
- □ Some VRS applications May Bias Circuit For Diagnostics



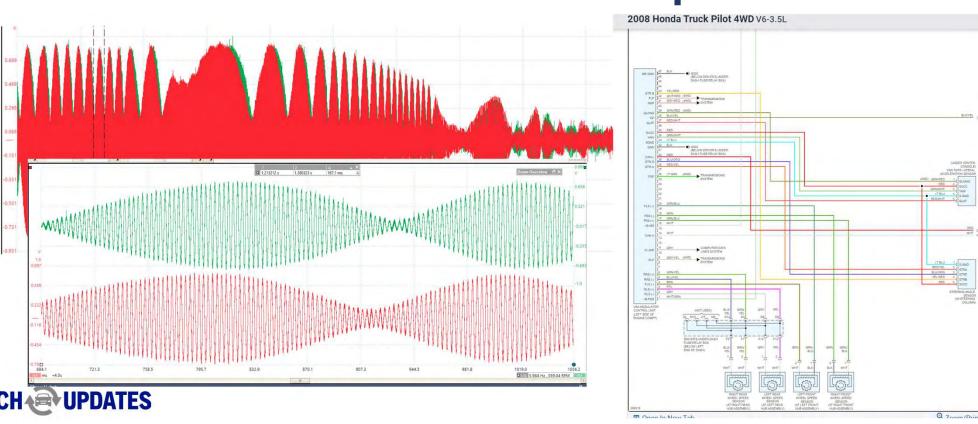
Variable Reluctance Sensor (VRS)

- ☐ Reliably used on earlier systems.
- ✓ Signal generating sensor types.
 - VSS, CMP, CKP, Trans output Shaft RPM, etc.

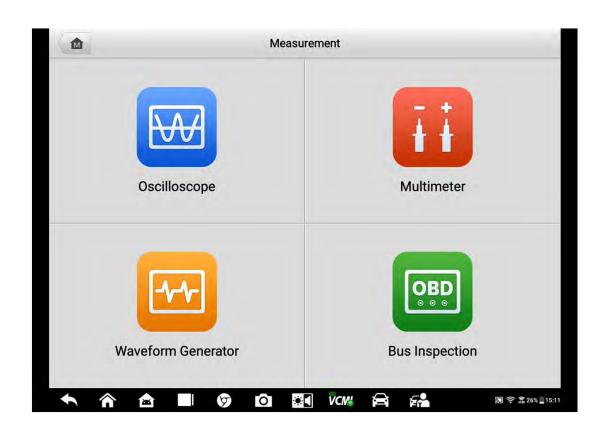

© 2023 NAPA AUTOTECH - All Rights Reserved

✓ Uses A Permanent Magnet Surrounded By A Coil Of Wire

Variable Reluctance Sensor (VRS)


- ✓ Variable peak to peak Voltage.
- √ Variable frequency.

VRS

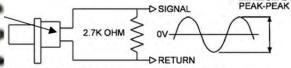


■ 2008 Honda Pilot VTM-4 rear wheel speed sensors

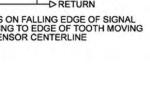
Using Scope For VRS Testing

Variable Reluctance Sensor (VRS)

□ Reluctor Signature Gap


MINIMUM 2V

used for indexing

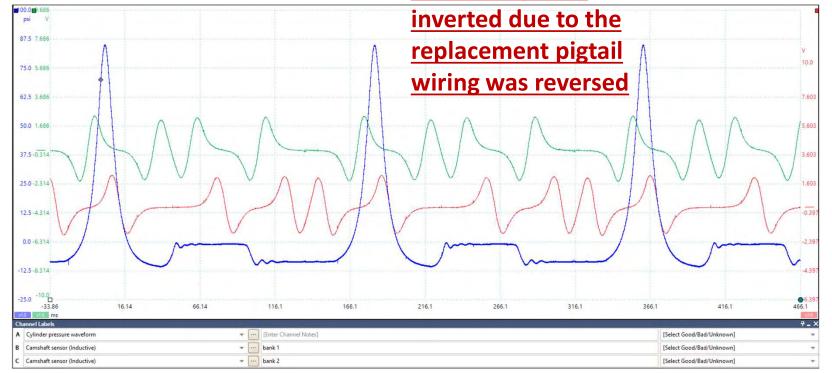

Single or multiple spacing

Varied Lengths

VARIABLE RELUCTANCE SENSOR

ECM TRIGGERS ON FALLING EDGE OF SIGNAL CORRESPONDING TO EDGE OF TOOTH MOVING AWAY FROM SENSOR CENTERLINE

VRS



□ Land Rover LR3, new CMP on B2 (green)

☐ Setting cam/crank correlation code for B2

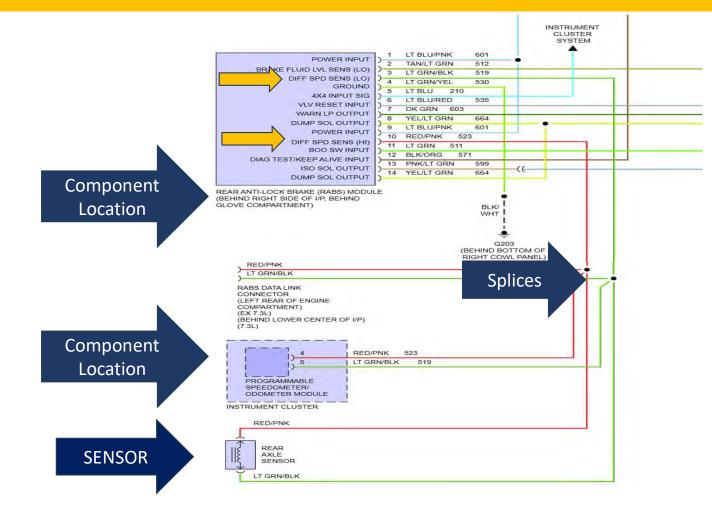
■ What do you see

B2 CMP signal is

94 Ford F150 No Speedometer ABS Light

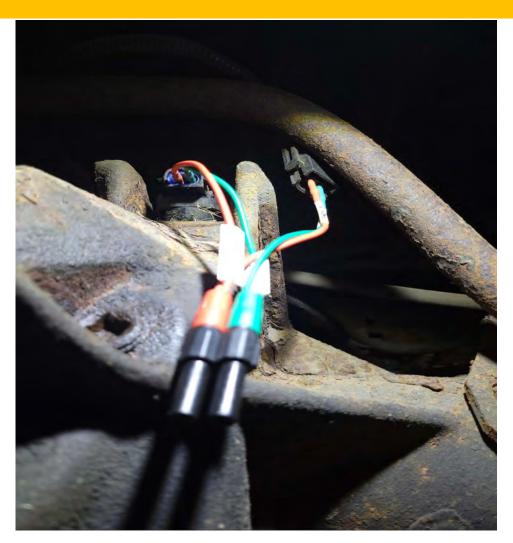
Service Information

SPEEDOMETER


- 1. Turn ignition on.
- 2. Observe odometer. If odometer display is on and digits appear normal, go to next step. If odometer display is not on and/or digits do not appear normal, go to step 6).
- 3. Observe odometer. If word ERROR appears, replace speedometer. If word ERROR does not appear, go to next step.
- 4. Test drive vehicle. If odometer accumulates mileage, go to step 9). If odometer does not accumulate mileage, go to next step.
- 5. Test drive vehicle. If indicated speed on speedometer increases with increasing vehicle speed, replace speedometer. If indicated speed does not increase, go to step 8).
- 6. Remove, check, and install fuses No. 8 and 17. If fuses are okay, go to next step. Replace fuses and repair shorted wires, if necessary. If speedometer and odometer still do not operate, go to next step.
- 7. Turn ignition on. Backprobe terminals No. 1 (Light Green/Yellow wire) and No. 3 (Pink/Black or White/Purple wire) of Programmable Speedometer/Odometer Module (PSOM) harness connector, located behind instrument cluster. If battery voltage does not exist, repair appropriate wire from fuse panel. With ignition off, measure resistance between terminal No. 2 (Black/White or Pink/Orange wire) and ground. If resistance is greater than one ohm, repair Black/White or Pink/Orange wire.
- 8. Set DVOM to measure AC voltage. Backprobe PSOM terminals No. 4 Red/Pink wire) and No. 5 (Light Green/Black wire). Test drive vehicle. If voltage increases smoothly from zero to approximately 3.5 volts as vehicle accelerates to 30 MPH, replace speedometer. If voltage does not increase as specified, repair speed sensor circuit. See chassis wiring diagram in WIRING DIAGRAMS.
- 9. Test drive vehicle. If indicated speed on speedometer increases with increasing vehicle speed, speedometer is okay. If operation is not as specified, replace speedometer.

Wiring Diagram For Sensor

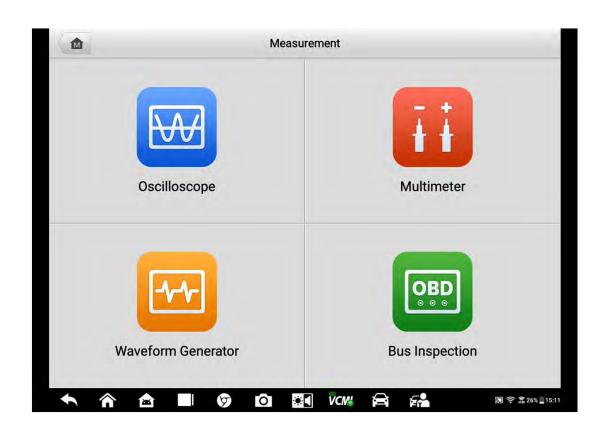
Using our "roadmap" we can form a plan of where to test



Easy hook up at the sensor (A/C Wheel Speed)

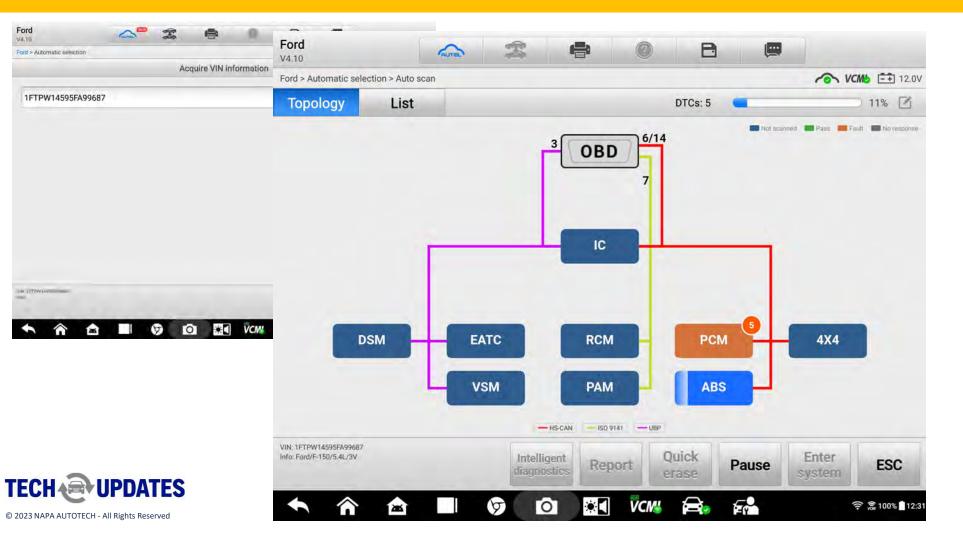
- ☐ Green is Low
- ☐ Red is High
 - Both Analog And Digital wheel speed sensors exist
 - Understanding the circuit is critical

What Will A DVOM Reveal



Is There More Information On A Scope

Broken Wires



05 F150 Poorly running engine

5 codes to start We will focus on sensor

. PCM(Powert	rain Control Module)(5 DTCs)	
Codes	Description	Status
P0171:FF	System Too Lean Bank 1	CMDTCs
P0303:FF	Cylinder 3 Misfire Detected.	CMDTCs
P0345:FF	CID(Camshaft Position Sensor) A Circuit (Bank 2)	CMDTCs
P0349:FF	CID(Camshaft Position Sensor) A Circuit Intermittent (Bank 2)	CMDTCs

Service Information P0345

DTC P0345: Camshaft Position (CMP) Sensor Circuit Malfunction (Bank 2)

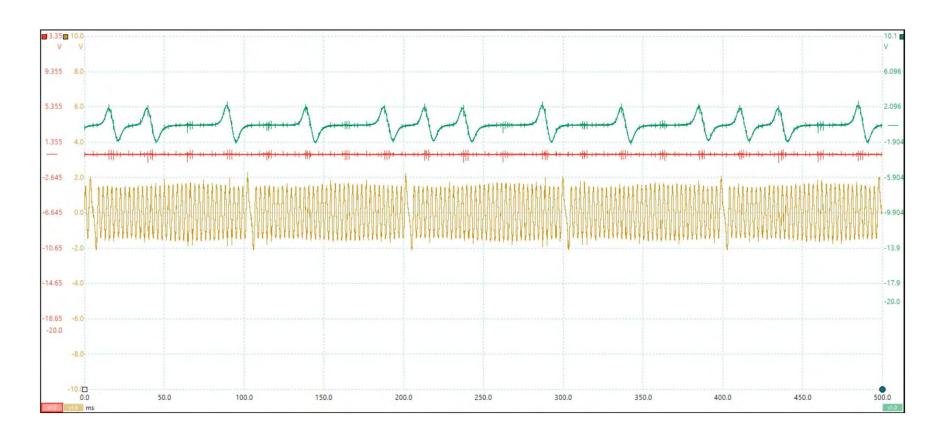
DTC P0340: Camshaft Position (CMP) Sensor Circuit Malfunction (Bank 1)

P0340 - CAMSHAFT POSITION (CMP) SENSOR CIRCUIT MALFUNCTION (BANK 1)

Description:	The test fails when the powertrain control module (PCM) can no longer detect the signal from the CMP sensor on bank 1.				
Possible Causes:	CMP circuit open CMP circuit short to GND CMP circuit short to PWR SIG RTN open (VR sensor) CMP GND open (Hall-effect sensor) CMP circuit short to CMP2 circuit (if equipped) CMP incorrectly installed (Hall-effect sensor) Damaged CMP sensor shielding Damaged PCM				
Diagnostic Aids:	Harness routing, harness alterations, improper shielding, or electrical interference from other improperly functioning systems may have an intermittent impact on the CMP signal.				
Application	Key On Engine Off	Key On Engine Running	Continuous Memory		
All	GO to DR: Camshaft Position (CMP) Sensor STEP DR1.				

S ZUZO NAPA AUTUTECH - AH KIGHLS KESERVEU

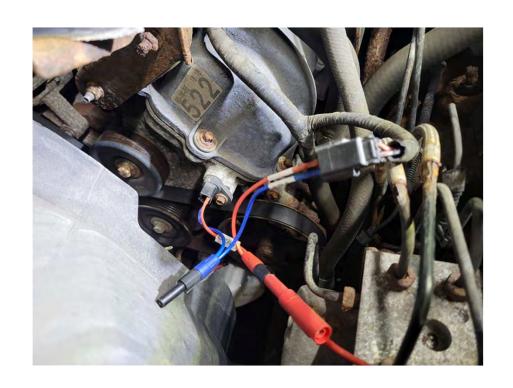
Fist look at PCM CPK CMP1 CMP2


- ☐ Easiest to test at PCM
- □ Back probing chosen
- □ Removed harness hood

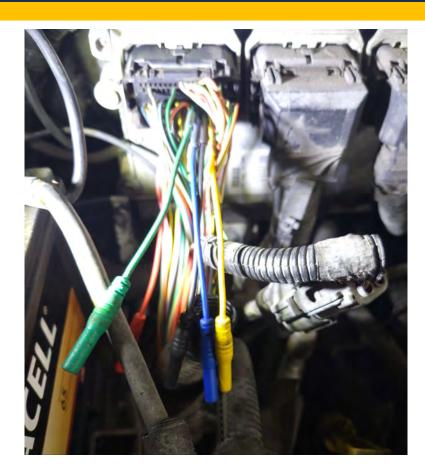
CMP1=green CMP2=red CPK=gold at PCM

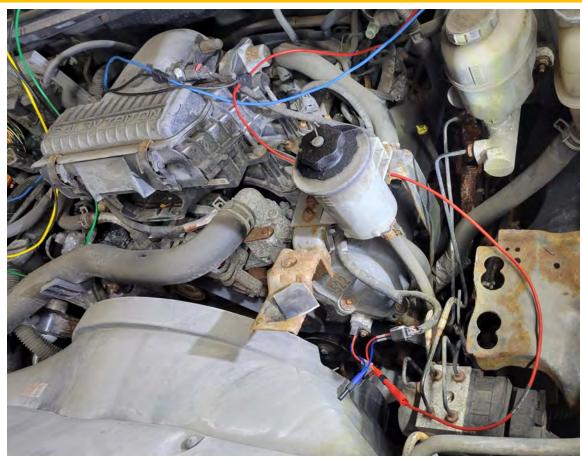
Going There

- We have proven the PCM is not receiving a signal
- Sensors aren't always mounted in easy access spots
- ☐ This example had little teardown to access sensor itself

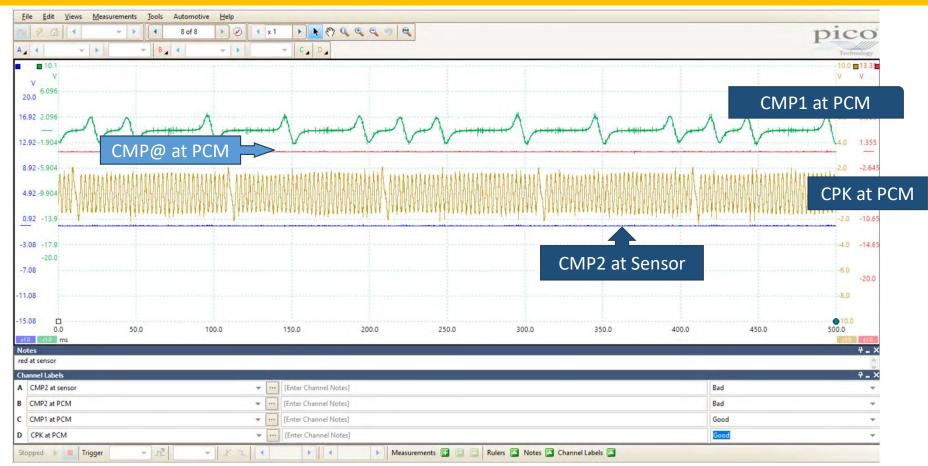


Backprobe or Terminal Adapter At the CMP Sensor


- □ Y-terminal adapter installed for easy scope connection in-series
- □ Provides easy access for sensor resistance testing as well

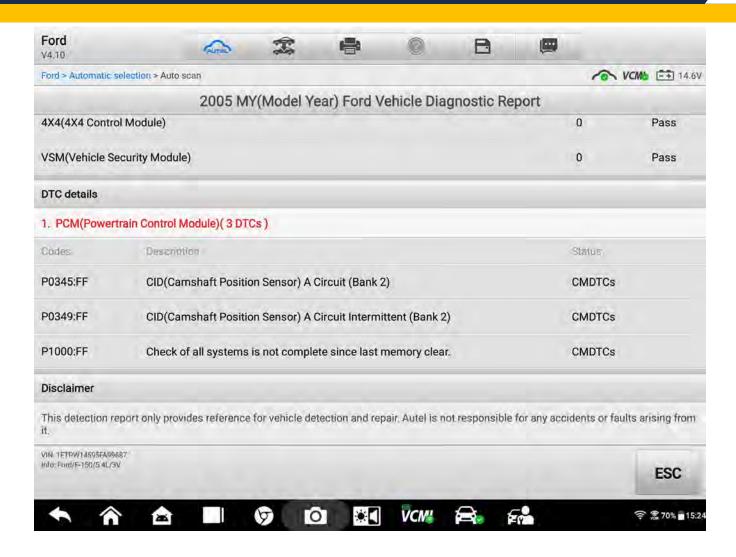


PCM back probed & compared to @ sensor

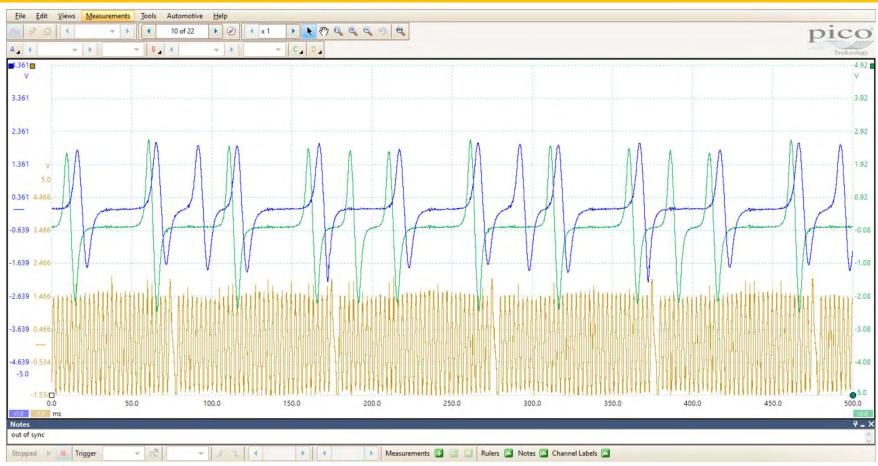


Now with 4th channel at sensor

After CMP2 sensor replacement at PCM

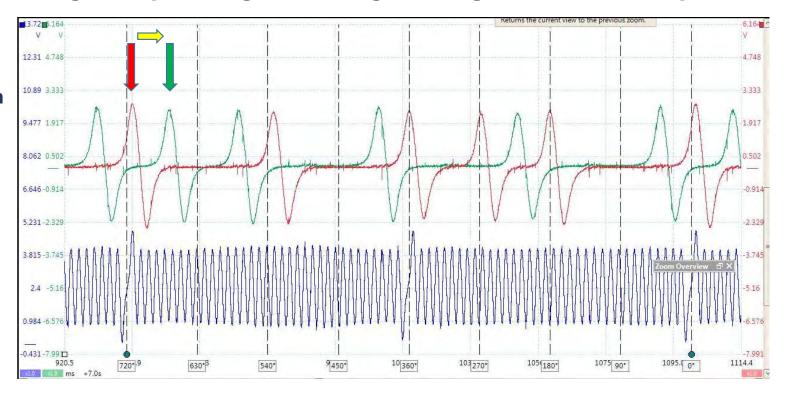


Didn't take long to set code again



Both CMPs and CPK at PCM

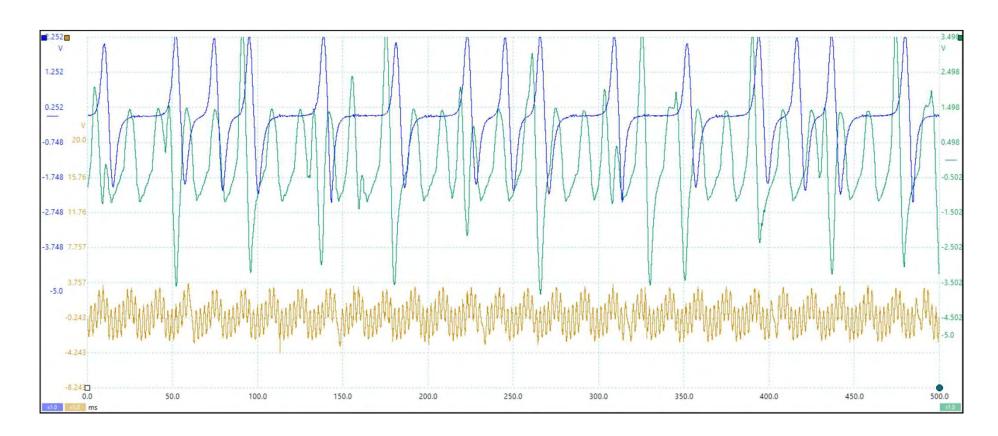
We now have both CMPs and CPK


Circuit Fault Explanation

- ☐ Ford 5.4 3V setting P0345 CMP 2 Circuit Fault
- □ Shop already installed new sensor
- Red trace at arrow should be where the Green is
- Mechanical timing is not producing a sensor signal voltage when the PCM expects it

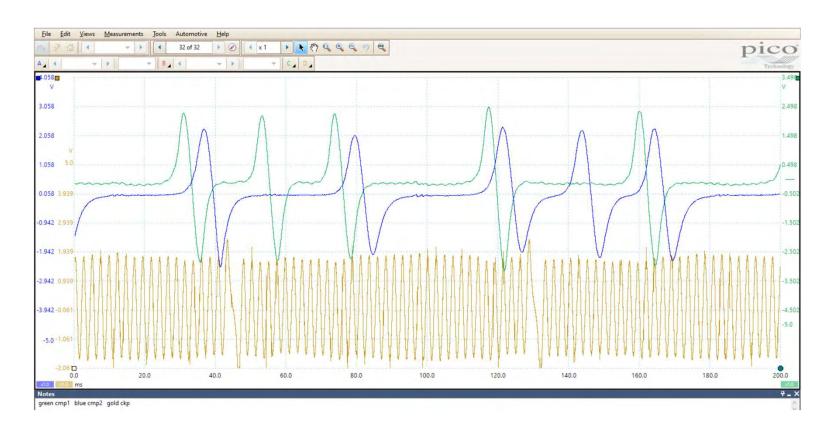
We Started With No Signal

No amount of sensors can fix a timing issue!!!

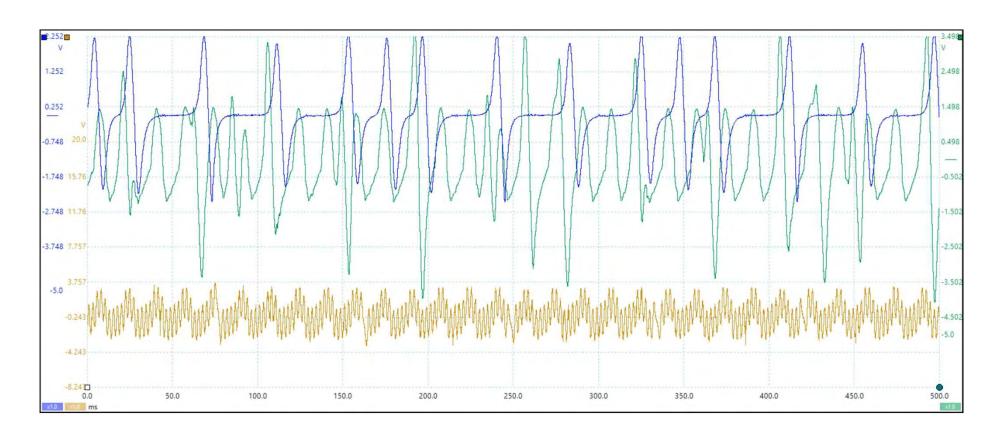


Bonus Knowledge

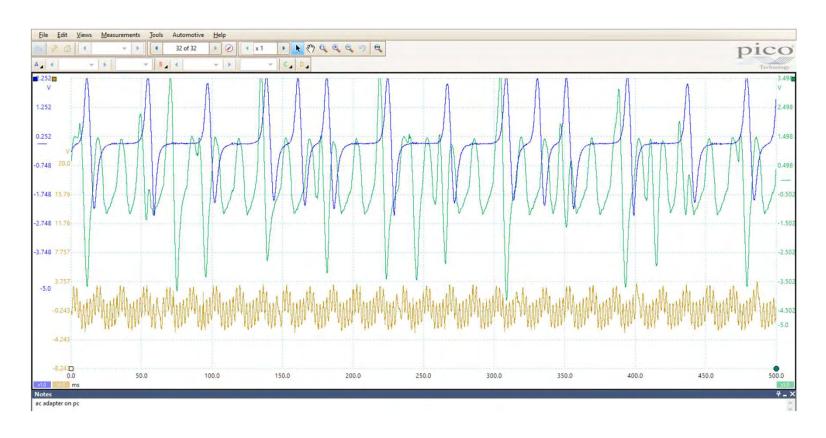
After repair this is what is first observed



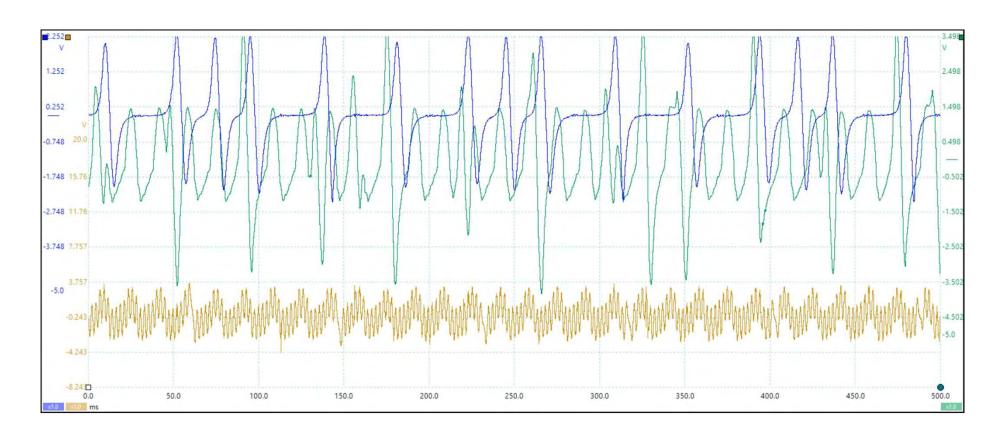
What changed now?



Second look



How many "surges" in the CPK sweep?



Laptop AC power on / removed / on

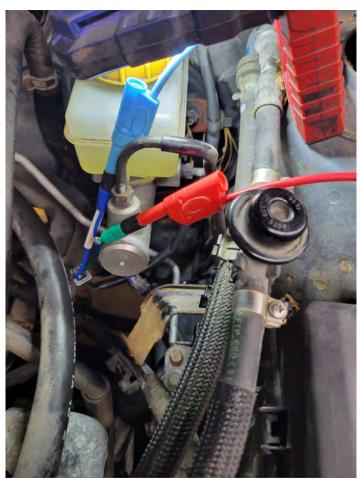
Magneto Resistive 2 Wire

- □ Active Wheel Speed sensors
- □ ECU Provides voltage and constant monitored current
- □ 7 to 14 ma Toggle from sensor
- ☐ Signal Can Be On Either Side Of Circuit
- **□ ECU Monitors Via A/D Converter**
- □ Causes slight Voltage Change On One Side



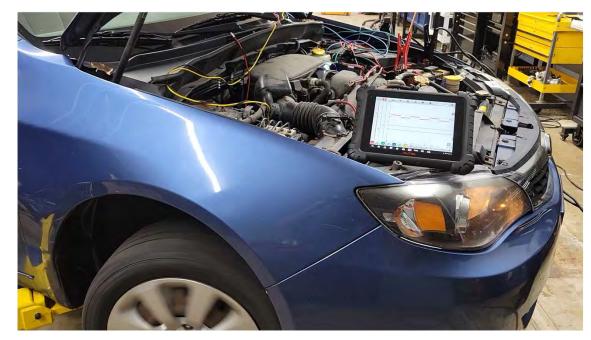
Magneto Resistive Sensors

- □ Can Detect No Or Low Speed
- □ Can Detect Direction
- Small Packaging
- □ Semi Active, Magnet In Sensor Ferrous Trigger
- ☐ Fully Active, Magnet Encoder Ring Trigger

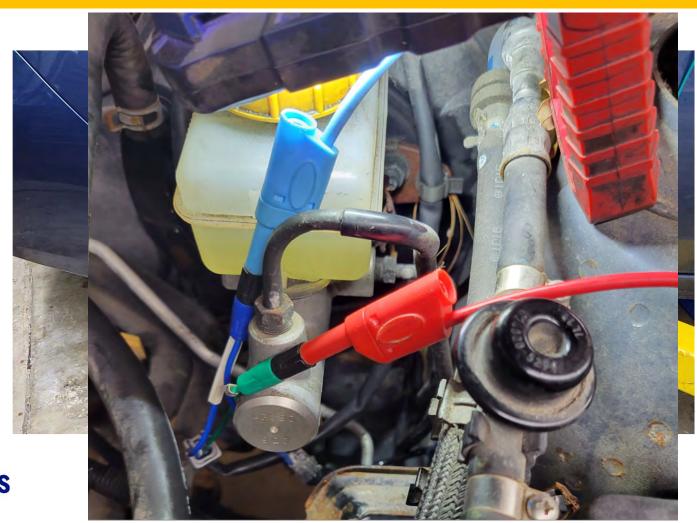


Comparing Known Good Signals

- ☐ If a signal is missing compare it to another known-good signal
- Here we compare a Subaru wheel speed signal from one side to the other



Subaru Missing WSS


- □ Before scoping, first test drive w/Scan tool to observe all wheel speed sensor live data
- □ Verify Customer Concern...No FL Output
- ☐ Let's take a look

Shared FR Voltage To FL Sensor

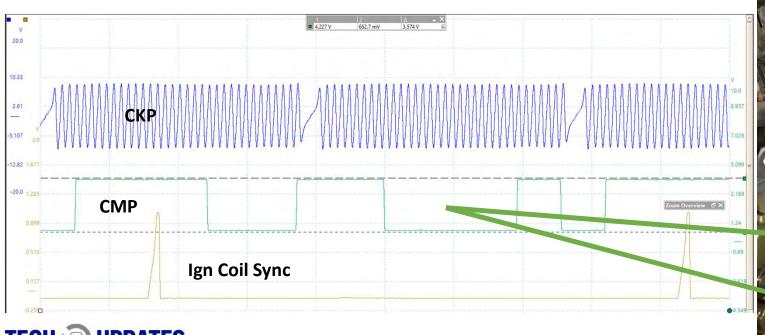
TECH UPDATES

Adding Voltage To Sensor

- □ Sensor bias voltage was not being provided by the ABS module (to FL wheel)
- As a test, FR Sensor Reference Voltage supply was provided
- Correct speed signal was then generated

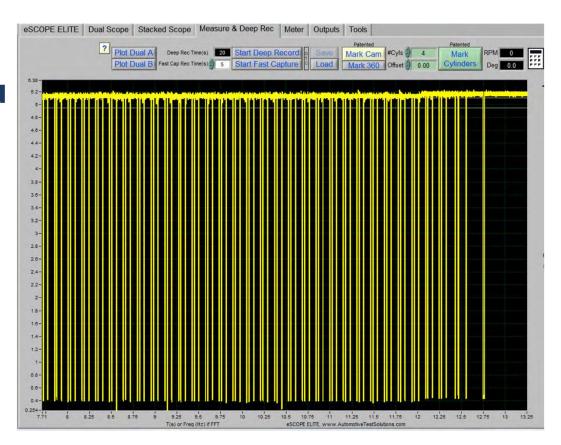
Name 0 items selected	Value	Unit
FR wheel speed ©	1.86	mph
FL wheel speed ©	1,86	mph

□ After proving out vehicle wiring, ABS module replacement was Recommended Repair

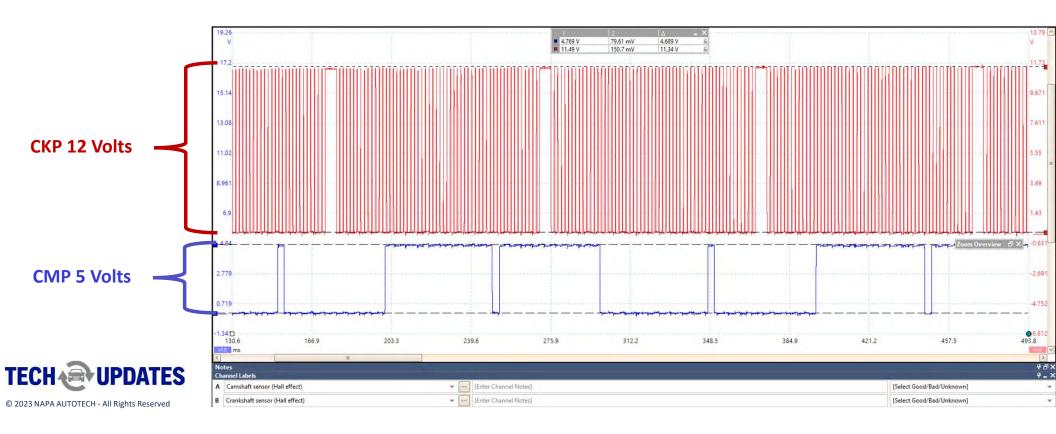


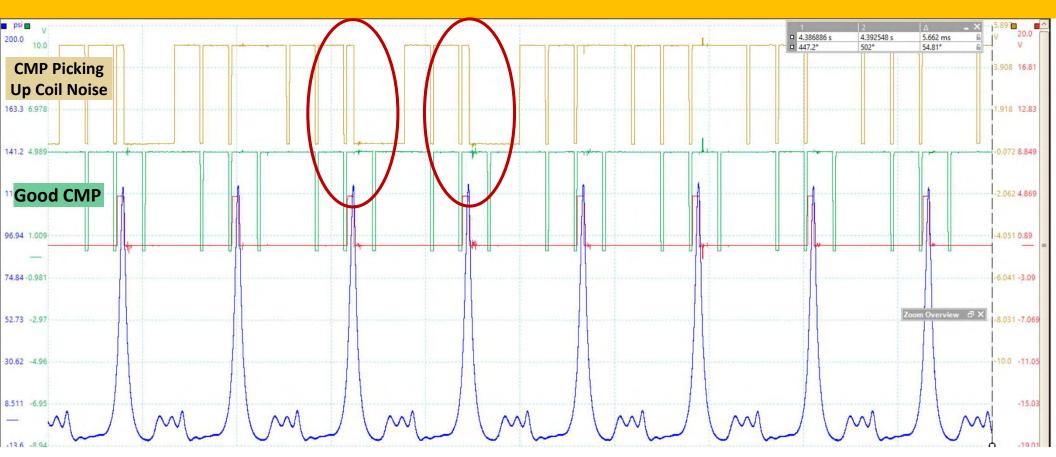
- **□** 3 Wire MR sensors:
 - Pull-up
 - Pull-down
- May Verify type by unplugging and checking for two 5-volt measurements at the connector
- □ A pull-down will have a 5v ref, a ground, and a current limited 5v to 12v signal circuit that gets pulled toward ground by the sensor
 - NOTE: if the pull-down sensor is missing the ?v signal supply, then you can easily mis-diagnose these as a bad sensor

- ☐ Toyota 4.0L V6 CMP signal (biased 750 mv off ground)
- ☐ Green trace shows 3 different width reluctor windows



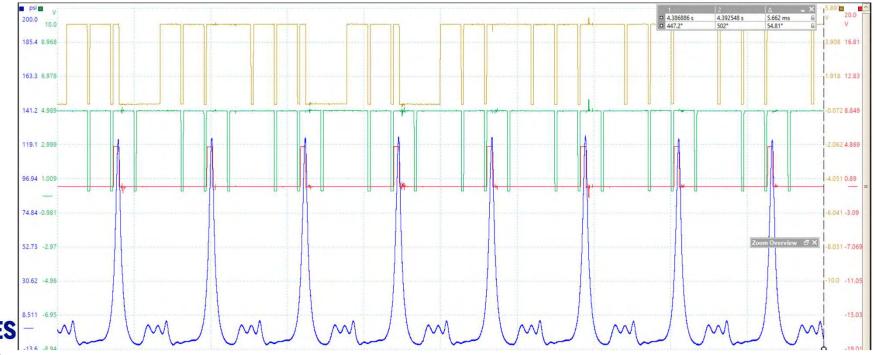
TECH UPDATE


- ☐ 2007 Honda CMP
- 5v signal
- Goes high when disconnected
- ☐ Pull-up or Pull-down sensor?
 - Pull Down
 - PCM supplies vRef of 5v, (current limited)
 - Sensor pulls signal low when switching
 - Biased off ground Why?



- Not all MR sensors use 5v vRef
- ☐ These CKP and CMP sensors have different output voltages (Duramax 6.6 LLY)

Subaru Cam Sensor Codes

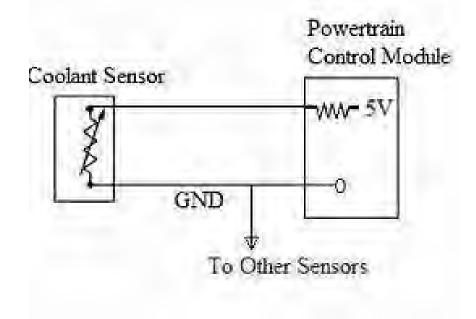


- ☐ This Subaru CMP is showing magnetic interference at times after a specific ignition event and is consistently the same one
- □ Replaced Failing ignition coil to fix

TECH UPDATES

Temperature Sensors

Thermistors and Thermal couples


Thermistors

□ Thermistors Use Resistance To Measure Temperature Change

☐ Reference Voltage Is Influenced By Changing

Resistance

PTC/NTC Thermistor

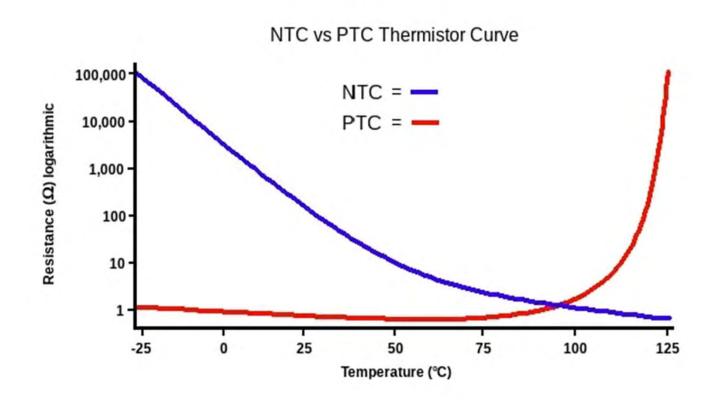
- ☐ PTC- Positive Temperature Coefficient
 - PTC- Temperature and Sensor Resistance have a linear relationship:
 - As temp increases, resistance increases
- □ NTC- Negative Temperature Coefficient

NTC Thermistor

- □ NTC is the more common temperature sensor
- □ 5v ref is pulled down across sensor as temperature increases
- ☐ Circuit is current limited, and sets fault codes when voltage goes below ~ 0.2v or above 4.8v
 - Below ~ 0.2 = Shorted Circuit Code
 - Above ~ 4.8v = Open Circuit Code
- What is a typical current limit?

PTC Thermistor

☐ PTC is not as common as NTC


- ✓ A well-known application is a hot-wire MAF
 - Increasing air cools the sensing element and decreases resistance.
 - Less resistance = increased current flow.
 - Offset to maintain a constant temperature.

PTC/NTC Thermistor

PTC/NTC Thermistor

- ☐ It is common now to see dual-range temperature sensors
- □ These are used in applications so that 1 sensor can perform the role of 2
- □ At a specified temperature/resistanc e, sensor switches from "Cold Range" to "Hot Range"

Cylinder Head Temperature (CHT) And CHT2 Sensor Expected Val

Temperature CHT Sensor Values

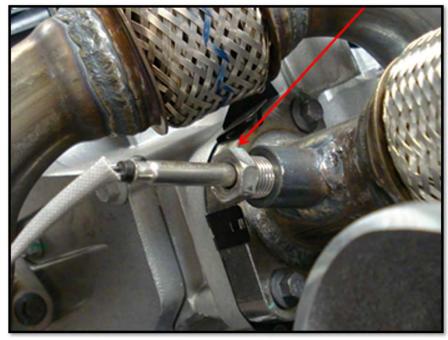
С	°F	Cold End (volts)	Hot End (volts)	Resistance (K ohms
-40	-40	4.89		965.808
-30	-22	4.81		513.019
-20	-4	4.67		283.664
-10	14	4.45	-	162.584
0	32	4.14	-	96.255
10	50	3.73	-	59.175
20	68	3.26	-	37.387
30	86	2.74		24.215
40	104	2.23	-	16.043
50	122	1.76	-	10.85
60	140	1.36		7.487
70	158	1.04	-	5.268
80	176	0.79	3.99	3.775
85	185	0.69	3.86	3.215
90	194	0.60	3.71	2.75
95	203	0.53	3.56	2.361
100	212	0.46	3.41	2.034
110	230	-	3.07	1.523
120	248	-	2.74	1.155
130	266	-	2.41	0.8866
140	284	-	2.10	0.6891
150	302	-	1.81	0.5417
160	320	-	1.55	0.4301
170	338	-	1.33	0.3449
180	356	-	1.13	0.2791
190	374	-	0.96	0.2278
200	392	-	0.82	0.1875
210	410	-	0.70	0.155
220	428	-	0.60	0.130
230	446		0.51	0.109
240	464	-	0.44	0.092
250	482		0.35	0.078
260	500		0.33	0.067

Thermocouple

- □ Thermocouples Use Voltage To Sense Temperature
- □ Consists Of Two Dissimilar Metal Wires Joined At One End (Nickel-Chromium/Nickel-Alumel)
- When Exposed To Temperature Gradients It Generates Voltage Proportional To Change
- ☐ Accurate Above 2000°c (3632°f)
- **☐** Fast Response

Resistive Temperature Sensor

- ☐ RTDs Use Resistance To Sense Temperature
- ☐ Mid Temperature Range Up To 600°c (1112°f)
- □ RTDs Offer Stable, Linear, And Highly Accurate Temperature Detection



Exhaust Gas Temperature

□ In automotive, RTDs are generally associated with high temperature environments, although they are found other places as well

RTD Resistive Temperature Detector

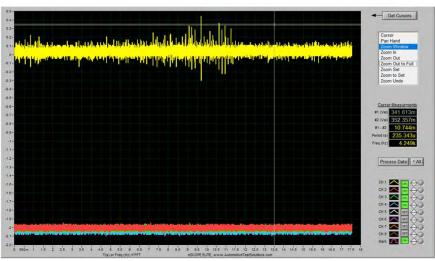
- □ RTDs are another form of a thermistor
- □ As they increase in temperature, resistance increases as well (PTC)
- □ Typical application today is exhaust gas temperature (EGT) sensor
- □ Able to measure 2,000+ °F

RTD

- □ 2018 GM 6.6L Duramax example EGT resistance is around 220 ohms @ 77 F
- ☐ 1,000 F would be close to 600 ohms
- ☐ 1,500 F would be close to 750 ohms
- With a 5v ref from a module, voltage will be lower with a cold sensor, and rise as the sensor warms up
- □ Default for open circuit is max temperature

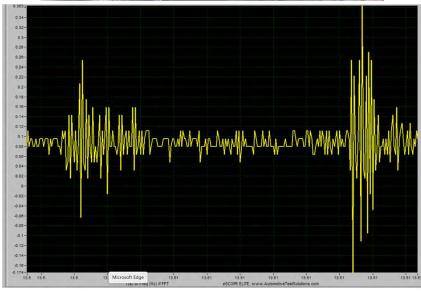
Open Circuit Logic

- □ If a module detects 1 or more open EGT's, depending on programming, will force engine into reduced power
- □ Reduction could be great enough to leave the vehicle inoperable



Piezo

- □ Piezo elements generate voltage from either pressure or vibration
- ☐ Commonly used for knock sensors
- □ Sensor circuits are shielded to prevent RFI/EMI in the signal


Piezo

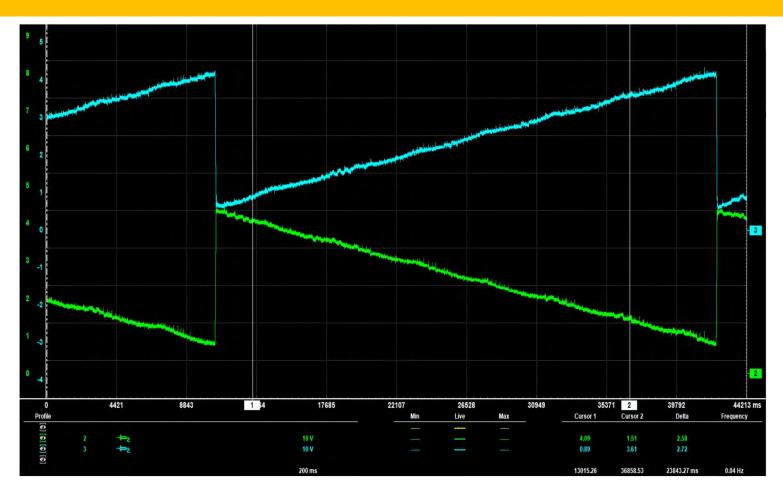
- □ Piezo sensors produce both voltage and Frequency
- ☐ Incorrect sensor frequency will result in sensor circuit faults
- ☐ Mountings under intake cause access issues
 - Light tapping on cylinder head near sensor

Potentiometer

- **□** 3-wire sensor
 - 🚥 5v ref, Ground, Signal
- □ Voltage signal changes as swiper contact moves across resistive elements
- Measures rotational movement within a specified range
- Wears out over time

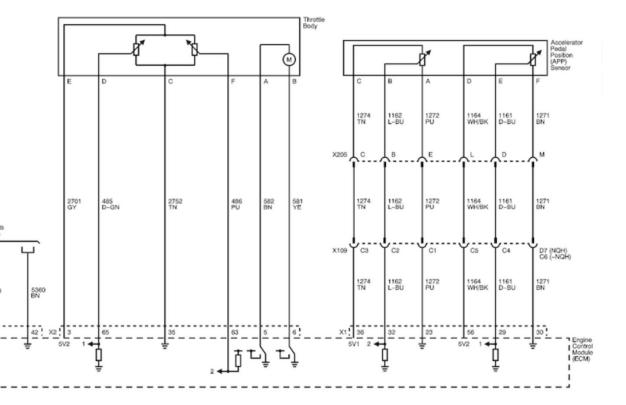
Applications;

- Steering Angle Sensor
- TPS/APP
- Turbocharger
- EGR valve
- Brake pedal
- And more...



Potentiometer

- □ 2012 GMC throttle sweep test with scan tool
- □ TPS 1 & 2
 voltages
 should add
 up to the 5v
 ref at any
 sample point

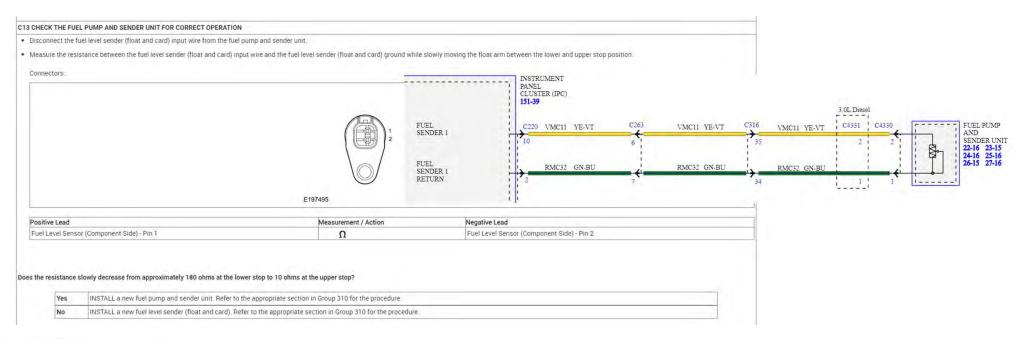


Potentiometer

- □ Note the 2 potentiometers in this system
- □ APP has 2separate 5V sets,whereas the TPShas 1 5V ref but 2outputs
- What would happen if 1 failed?

Rheostat

- □ Same principle as Potentiometer but has only 2 wires
- Has a minimum and maximum resistance range
- Carries a small amount of current that is proportional to its position and resistance
- □ Commonly used in fuel level sensors
- With 2-wires, correct polarity is a must
- Best to use a GMM or scope to perform a sweep test and watch for dropouts



Rheostat

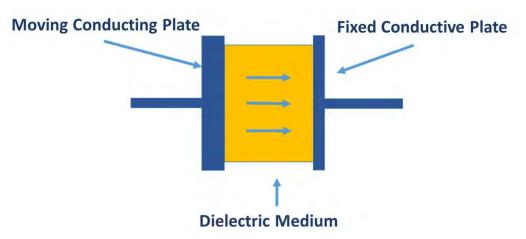
- ☐ Correct polarity is a must
- ☐ Use a GMM or scope to perform a sweep test

Zirconia

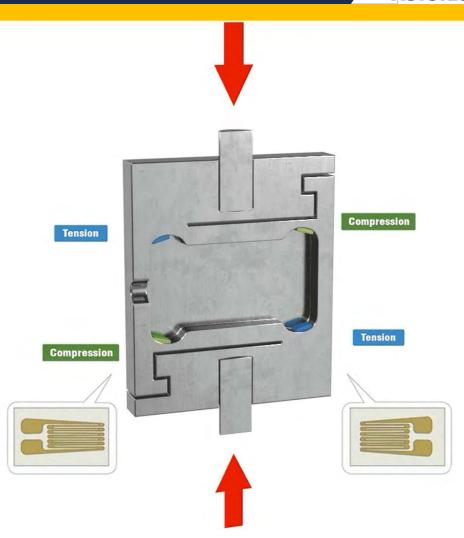
- While commonly referred to as an "Oxygen Sensor", the zirconia element is only one of the several sensor parts
- □ Known as a galvanic battery, the zirconia element produces a voltage as a reaction to differences in oxygen levels on opposite sides
- □ The O2 signal represents the amount of imbalance between oxygen inside vs outside of the exhaust pipe

Zirconia

- □ These are not to be confused with a Lambda sensor, aka Air-Fuel Ratio sensor
- □ O2 reference signal is often drawn thru the wiring insulation of the sensor
- ☐ Circuit repairs on the sensor harness should not be done


- □ A Capacitive Sensor, or Transducer converts pressure into voltage
- □ Uses 2 plates separated by a "dielectric medium." 1 plate moves and the other is fixed
- □ Applied pressure decreases plate distance, causing output voltage changes

- □ Capacitive sensors are very sensitive and extremely accurate
- ☐ If anything contaminates the dielectric medium, the sensor will no longer report correctly

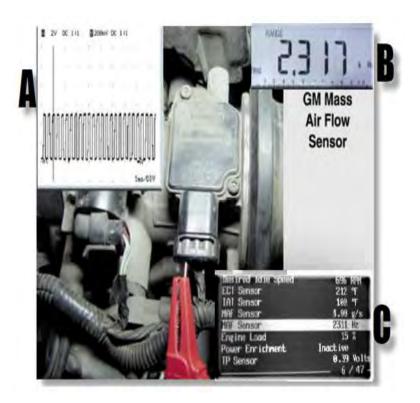


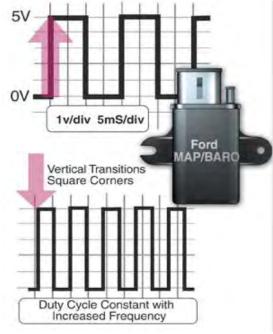
- ☐ Strain-gauge sensor/transducers also change voltage relative to pressure applied
- Made up of a film placed over a substrate
- ☐ The circuit is precisely woven from end to end
- □ Force deflects the substrate causing distance changes between the segments that alter resistance
- □ One end is fixed, while the other end can move

- □ A Wheatstone Bridge is used to measure actual resistance changes
- ✓ These provide accurate measurements for load, torque, pressure, acceleration, etc.

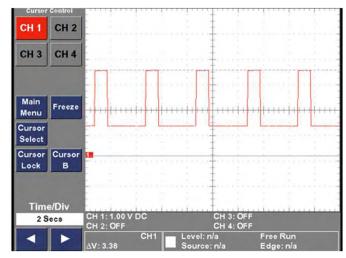
Frequency Sensors

- □ Frequency-type sensor have been in use in automotive for many years
- They have no rotating or moving parts
- □ Commonly used in MAP and MAF sensors
- Other sensors use frequency signals coming from modules, rather the sensors themselves
- □ A reductant level sensor is a good example





Frequency



Ford 6.7 Reductant Level Sensor

Types Of Sensor Faults and Codes

- ☐ There is no DTC saying "This part is bad"
- □ An "O2 sensor signal stuck rich" or "O2 sensor no signal" does not mean the sensor has failed
- Many reasons to set a DTC
 - Parts replacement can get expensive "REALLY" quick!
 - ALWAYS refer to the OE information

Sensor Fault Descriptions

- □ Circuit Fault
- Circuit High
- □ Circuit Low
- Range/Performance
- ☐ Signal Stuck ...
- No Signal
- **Short to Positive**
- Short to Ground

Which one means the sensor is bad????

Circuit Fault

- ☐ The MOST common and generic code when dealing with sensors
- Module has not seen what it expected when it expected it
- Not always a sensor fault or a wiring/circuit issue
 - Common description with engine timing faults

CMP Ignition System Check	Operation:		
DTCs	P0340 - Intake Cam Position Circuit, Bank 1		
	P0344 - Intake Cam Position Circuit Intermittent, Bank 1		
	P0345 - Intake Cam Position Circuit, Bank 2		
	P0349 - Intake Cam Position Circuit Intermittent Bank 2		
	P0365 - Exhaust Cam Position Circuit, Bank 1 P0369 - Intake Cam Position Circuit Intermittent, Bank 1		
	P0390 - Exhaust Cam Position Circuit, Bank 2		
	P0394 - Exhaust Cam Position Circuit Intermittent Bank 2		
Monitor execution	continuous		
Monitor Sequence	none		
Sensors OK			
Monitoring Duration	< 5 seconds		

Typical CMP ignition check entry conditions:			
Entry Condition	Minimum	Maximum	
Engine RPM for CMP	200 rpm		

Typical CMP ignition check malfunction thresholds: Ratio of PIP events to CMP events: 4:1, 6:1, 8:1 or 10:1 based on engine cyl. Intermittent CMP signal – CMP signal in unexpected location

Sensor Locations and Access

Toyota Crank

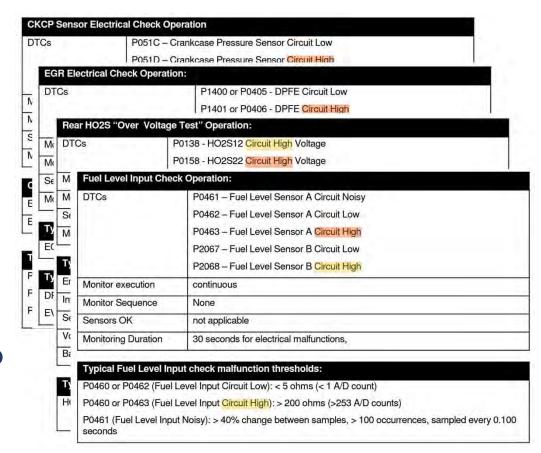
Position Sensor

- □ Sensors are not always easy to access
- What if you can't access the sensor?
- □ Start with easiest circuit entry point for testing
- ☐ Testing @Sensor vs @Module
- What to look out for

Circuit High

□ Can be set from

- Poor or open connection
- Corrosion
- Short to 5v Ref in component or harness
- Short to 5v Ref in module
- Failed component
- Short to another circuit with a normal higher voltage
- Failed sensor ground
- False code set from failed module



Circuit High

- □ For a 5v sensor, a "circuit high" sets when the sensor signal voltage has been above a maximum specified voltage for at least a certain length of time
- □ Refer to service info for code setting criteria to ensure proper testing
- □ Same description can also set from a measured resistance value

Circuit Low

- Setting criteria similar to a "circuit high" fault in some ways
- □ Voltage lower than expected for certain time
- □ Can also be set by low resistance detected

	Vout=Vref * (0.007895 * Pressure (in kPa)				
	Volts		Pressure, kPa	Pressure, Inches Hg	
				**	
	Intake Air	Temperature 1 Sensor	Circuit Range Check		
	DTCs	P0112	2 Intake Air Temperature	Sensor 1 Circuit Low (Bank 1)	- 4
		P0113	3 Intake Air Temperature	Sensor 1 Circuit High (Bank 1)	
	Monitor e	EGR Electrical Check	Operation:		
	Monitor 5	DTCs	P1400 or P	0405 - DPFE Circuit Low	
	Sensors		P1401 or P	0406 - DPFE Circuit High	
Barom	Monitorir		P1409 or P	0403 - EVR circuit open or shorted	
DTCs		Monitor execution	Continuous	during EGR monitor	
	Typical	Monitor Sequence	None		
Monito	P0112	Sensors OK			
Monito	P0113	Monitoring Duration	4 seconds t	4 seconds to register a malfunction	
Sensor			N	900	
Monito	Intake A	Typical EGR electrical	check entry conditions:		
	DTCs	EGR system enabled			

Typical EGR electrical check malfunction thresholds:

DPFE sensor outside voltage: > 4.96 volts, < 0.0489 volts

EVR solenoid smart driver status indicates open/short

Monitor €

Monitor §

Sensors

Monitorir

P2229

	DPFE Sensor Transfer Function					
	ESM DPFE volts = Vref [(0.683 * Delta Pressure) + 10] / 100					
	Volts	A/D Counts in PCM	Delta Pressure, Inches H ₂ O			
	0.0489	10	-13.2			
	0.26	53	-7.0			
- 1	^-	100	^			

Circuit Low

☐ Can be set from:

- Circuit short to ground
- Short to ground in component or module
- Loss of or low 5v Ref
- Failed component
- Open connection
- Harness short to another circuit
- False code set from failed module

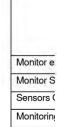
Circuit Range/Performance

- □ This fault description uses more logic-based criteria
- Multiple parameters are often compared to each other, with specific condition requirements, to determine if there is a fault
- ☐ If 1 of the parameters is different enough from the others, then a range/performance fault sets

BARO, TCB-A, MAP Sensor 3-Way Correlation Check at Key-Up

At key-up BARO TCR. A and MAR are compared. If any two agree and one does not that sensor is declared faulted.

• At low engine air flows no turbocharger boost is commanded and BARO should be very close to TCB-A.


Engine A

DTCs

IAT1, CACT, IAT2 Out of Range Hot Check

The IAT1, CACT, IAT2 are all checked for maximum expected temperature readings during a steady state driving condition. When parked at hot ambient temperatures or after heavy load operation, these temperatures can climb

to unusually high temperatures thus the "too hot" check is not done at those conditions.

DTCs	P0111 Intake Air Temperature Sensor 1 Circuit Range/Performance (Bank 1) P007B Charge Air Cooler Temperature Sensor Circuit Range/Performance (Bank 1)	
	P0096 Intake Air Temperature Sensor 2 Circuit Range/Performance (Bank 1)	
Monitor execution	Continuous	
Monitor Sequence	None	
Sensors OK	ECT/CHT, IAT, VSS	
Monitoring Duration 250 seconds to register a malfunction		

Typical E

CHT at le

P0096 IAT2 > 240°F

Engine Air Temperature Sensor Out of Range Hot Check Entry Cond	lot Check Entry Conditions		
Entry condition	Minimum	Maximum	
Vehicle speed	40 mph		
Time above minimum vehicle speed (if driving req'd)	5 min		
For IAT1, Load below a maximum load threshold	1.0		

P0111 IAT1 > 150°F P007B CACT > 220°F

Typical Engine Air Temperature Sensor Out of Range Hot Check Malfunction Thresholds

Circuit Range/Performance

☐ Can be set from:

- Module software that needs to be updated
- Single problem affecting multiple circuits
- Sensor biased
- Corrosion
- Restriction in a tube/hose going to sensor
- Environmental effects such as radiant heat off of a surface near a parked vehicle

Signal Stuck

□ In the event a sensor signal circuit's voltage stays in a small range or doesn't change at all, a "signal stuck" code will set

2011 MY and beyond vehicles with Contl-Moto CBP-A2 PCM will also continuously monitor the rear HO2S signal for out of range low voltage, below -0.2 volts and store DTC P2A01, P2A04. An out of range low voltage condition is caused by swapped sensor wires (sensor signal and signal return) and sensor degradation.

Furthermore, the rear HO2S signal will also be monitored continuously for circuit open or shorted to ground beginning 2011 MY as the PCM hardware becomes capable of measuring HO2S impedance. An intrusive circuit test is invoked whenever the HO2S voltage falls into a voltage fault band. A pull-up resistor is enabled to alter the HO2S circuit characteristics. A very high HO2S internal resistance. S00 k name, will indicate an open HO2S.

circuit while a low HO2S i circuit open and shorted threshold.

Beginning 2015MY, Cont included on the chip. The

Rear HO2S Functiona	Not in P
DTCs Sensor 2	No Purg
	Purge ir
	Not perf
	Engine
	Intake A
	Time sir
Monitor execution	Inferred
Monitor Sequence	Heater-
***	Sensor(
Sensors OK	Short Te
School Six	Fuel Le
	Throttle
	Engine
	UEGO /
I	$\overline{}$

Monitoring Duration

Entry condition	Minimum	Maximum
Stream 1 HO2S not in CSD recovery mode		
Flex Fuel Composition not changing		
Not in Phase 0 of Evaporative System Monitor		
No Purge System reset		
Purge intrusive test not running		
Not performing CSER spark retard		
Engine Coolant Temp	150 °F	240 °F
Intake Air Temp		140 °F
Time since entering closed loop fuel	10 seconds	
Inferred Catalyst Midbed Temperature		1600 °F
Heater-on Inferred Sensor(s) 2/3 HO2S Temperature Range	400 °F	1400 °F
Sensor(s) 2/3 HO2S heater-on time	90 seconds	
Short Term Fuel Trim Range	-9%	11%
Fuel Level (forced excursion only)	15%	
Throttle position	Part throttle	
Engine RPM (forced excursion only)	1000 rpm	2000 rpm
UEGO ASIC not in recalibration mode		
No air passing through during valve overlap (scavenging).		
Battery Voltage	11.0 Volts	18.0 Volts

Typical Rear HO2S functional check malfunction thresholds: Does not exceed rich and lean HO2S voltage threshold envelope:

Rich < 0.42 volts

Lean > 0.48 volts

Lean > 0.48 voits

Signal Stuck

- Not limited to O2 sensors
- □ Any value that should have changed after a certain amount of time of vehicle operation and the monitor criteria have been met can set this fault

Transmission Fluid Temperature Sensor Functional Check Operation:

DIC

P0711 – in range failure

Monitor execution

Monitor Sequence

Sensors OK

Monitoring Duration

Typical TFT Stuck Low/High c

Auto Transmission Entry Condition

Engine Coolant Temp (hot or col

Time in run mode

Time in gear, vehicle moving, por Vehicle Speed

Time with engine off (cold start) (

Engine Coolant Temp AND Tran

Typical TFT malfunction thres

Opens/shorts: TFT voltage < 0.05

TFT Stuck low/high, i.e. TFT stuc

Stores a fault of decreasing if to MIL tests are approximately 2 code will be sto the normal open In the range above 85%, a 60% difference between fuel consumed and fuel used is typical. The actual value is based on the overfill capacity of the fuel tank and the fuel economy of the vehicle. Note that some vehicles can be overfilled by over 6 gallons.

DTCs	P0460 – Fuel Level Input Circuit Stuck
Monitor execution	continuous
Monitor Sequence	None
Sensors OK	not applicable
Monitoring Duration	Between 15 and 85%, monitoring can take from 100 to 120 miles to complete

Typical Fuel Level Input Stuck check malfunction thresholds:

P0460 (Fuel Level Input Stuck):

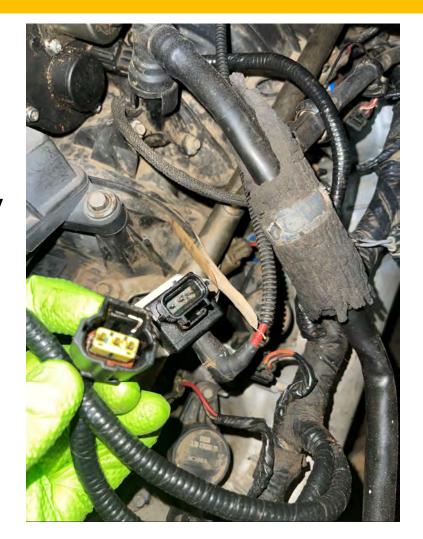
Fuel level stuck at greater than 90%: > 60% difference in calculated fuel tank capacity consumed versus change in fuel level input reading

Fuel level stuck at less than 10%: > 30% difference in calculated fuel tank capacity consumed versus change in fuel level input reading

Fuel level stuck between 10% and 90%: > 25% difference in calculated fuel tank capacity consumed versus change in fuel level input reading

The **Evap Monitor Microprocessor** is checked for proper microprocessor operation or loss of CAN communication with the main microprocessor (P260F). Applies only if EONV is in separate microprocessor.

Evap Monitor Microprocessor Performance:		
DTCs	P260F - Evap System Monitoring Processor Performance	
Monitor execution	continuous	
Monitor Sequence	None	
Sensors OK	not applicable	
Monitoring Duration	5 seconds	



Signal Stuck

☐ Can be set by:

- Biased sensor
- Temperature sensor surface contaminated
- Fuel level sensor mechanically stuck
- Shorted segment of fuel level sensor
- Low fluid level
- Faulty O2 heater
- Contaminated 02 sensor

No Signal/Slow/Delayed

- □ Depending on the OE's setting criteria, the vehicle can set either of the 3
- Variables can include:
 - When the vehicle tests
 - Length of test
 - Health of sensor at time of testing

Turbine Shaft Speed Sensor Functional Check Operation:

DTCs

Output Shaft Speed Sensor Functional Check Operation

Front UEGO Slow/

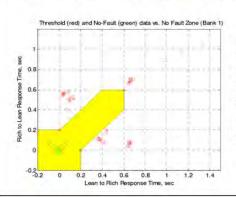
The front UEGO monitoresponse that would caresponse rate is evalua air/fuel ratio around stol sensor signal amplitude

A UEGO slow or delaye Combinations of the ric malfunction (P0133 Bar

UEGO "Response

DTCs

Monitor execution


Monitor Sequence

Sensors OK

Monitoring Duration

Threshold depends on failure type (symmetric slow/delay vs. Asymmetric slow/delay)

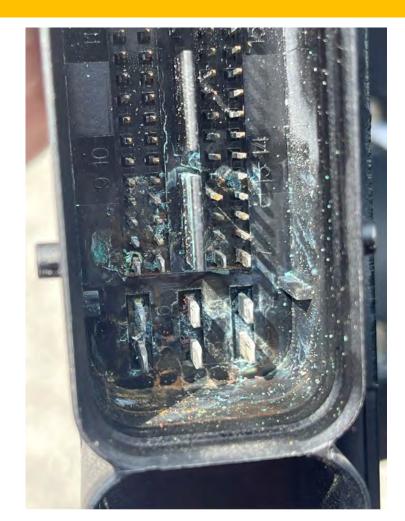
Example shown with lean-to-rich (0.2 sec), rich-to-lean (0.2 sec), and symmetric (0.6 sec) thresholds creating the yellow no-fault zone. The completeted monitor results in two measurements, a lean-to-rich response time and a rich-to-lean response time. These response time values are used as x-y pairs to make a single point and then compared to the no-fault zone. Anywhere in the yellow is a pass and outside the yellow is a failure.

Monitor ID	Test ID	Description	
\$01	\$87	UEGO11 Rich to Lean Response Time (P0133)	seconds
\$01	\$88	UEGO11 Lean to Rich Response Time (P0133)	seconds
\$05	\$87	UEGO21 Rich to Lean Response Time (P0153)	seconds
\$05	\$88	UEGO21 Lean to Rich Response Time (P0153)	seconds

speea

6HP26 Intermittent/Erratic: > -1000 rpm instantaneous change with locked torque converter clutch

CFT30 Intermittent/Erratic: > 6000 rpm/sec change

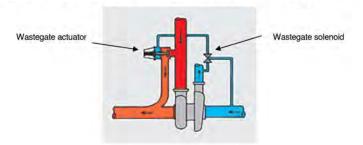


No Signal/Slow/Delayed

☐ Can be set by:

- Sensor contamination
- Magnetized reluctor that isn't supposed to be
- Failed magnet or component
- O2 heater fault
- Air/fuel ratio control problem

Short to Power/Ground


- □ For a short to power (battery +) code to set, a module is detecting voltage either equivalent to B+ or above a normal range when that circuit should be @ low voltage or within a specified range
- ☐ For a short to ground fault to set, a module is not detecting voltage present that it's expecting

Typical 5 Volt Sensor Reference Voltage A check malfunction thresholds:

P0642

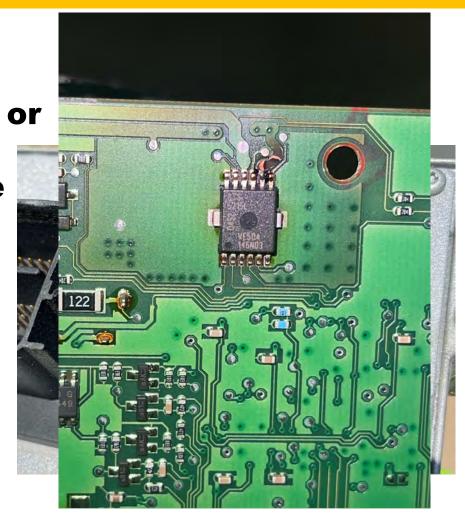
Short to

P0643 Short to As the compressor outlet pressure increases, a pneumatically powered actuator opens each turbocharger wastegate to limit compressor outlet pressure. The wastegate pneumatic solenoid valve modulates that feedback pressure to increase the boost pressure limit. A duty cycle of 100% vents feedback thus eliminating any wastegate controlled boost limit. A duty cycle of 0% results in the base boost limit of approximately 5 psi gauge.

DTCs	P0245 Turbocharger/Supercharger Wastegate Solenoid A Low P0246 Turbocharger/Supercharger Wastegate Solenoid A High
Monitor execution	Continuous
Monitor Sequence	None
Monitoring Duration	5 seconds

Wastegate Pneumatic Solenoid Valve Circuit malfunction thresholds:

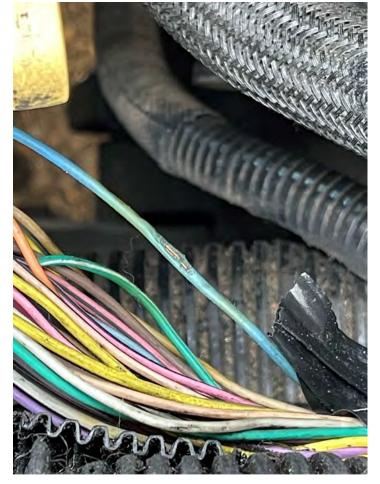
PCM smart driver hardware detects faults for circuit short to battery, short to ground, and open circuit. Fault status reported to PCM to set appropriate DTC.



Short to Power/Ground

☐ Can be set by:

- Open circuit in the harness or component
- Spread terminals at module
- Bent pin at module
- Corrosion at connection or eyelet
- Harness chafing
- Failed driver in module





Short to Power/Ground

Easier Access

- □ A lot of sensors are easily accessed for testing and service
- ☐ This one happens to be on the top and front of the engine facing the radiator area
- Now just need a wiring diagram and tools for testing

Not So Easy

- ☐ You may recognize this component
- □ Ford 5.4 3V IMRC actuator mounted to the back of the intake manifold
- □ Access to the connector is pretty much non-existent when the engine's fully assembled
- So what's the easiest place to test?

Work Smart

- Regardless of whether the engine is hot or cold when testing, access the easiest point of entry into the sensor circuit initially
- □ This can save time and headaches
- ☐ If the measurements are not what you expect at that location, then it's time to get as close to the sensor as possible

Click, Snap

- □ Plastic connectors and harness split loom get very brittle over age and heat cycles
- □ Slightest touch to a connector locking tab release and you get the dreaded "click" of a tab that just broke
- □ Begin moving the wire harness around and soon you find a pile of crumbled plastic loom all over the place and section of wiring that's now exposed to potential damage/abrasion

Look Out

- You may find that you were missing signal at the module but the signal was fine at the component
- ☐ Time to start working back toward the module and pay extra attention to the harness for rub points, damage, missing loom, etc.
- □ Some plastic loom is rigid enough to actually rub thru wiring in high vibration areas

- ☐ Concern:
 - Check Engine light on
 - Poor Fuel mileage
 - Heavy fuel odor from exhaust at all times
 - No misfires
- ☐ Will need:
 - DTC scan report
 - Scan data capture
 - Scope capture if sensor fault

- **□** DTC report shows:
 - All 4 02 sensor heater circuit low faults
- Is that possible?
 - Vehicle already has 4 new O2 sensors installed
 - Clear codes and they return immediately after a key cycle
- What information can we get from scan data?
- What do they all have in common?
- Will need a wiring diagram

Pre Scan Vehicle System Report

2005 Jeep Wrangler 4.0L L6 MPI VIN 1J4FA44S95P358698 Odometer License

CODE SCAN RESULTS Systems Analyzed: 4

Systems w/ Codes

Engine - Codes
P0057 2/2 O2 Sensor Heater Circuit Low
P0051 2/1 O2 Sensor Heater Circuit Low
P0037 1/2 O2 Sensor Heater Circuit Low
P0031 1/1 O2 Sensor Heater Circuit Low

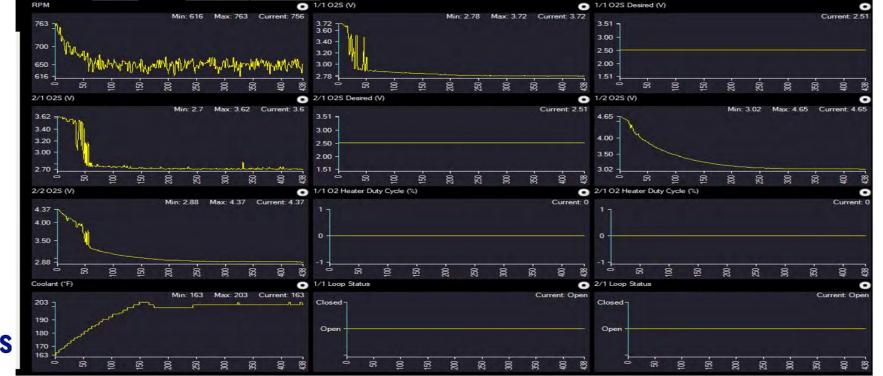
Engine - 1 Trip
P0057 2/2 O2 Sensor Heater Circuit Low
P0051 2/1 O2 Sensor Heater Circuit Low
P0037 1/2 O2 Sensor Heater Circuit Low
P0031 1/1 O2 Sensor Heater Circuit Low

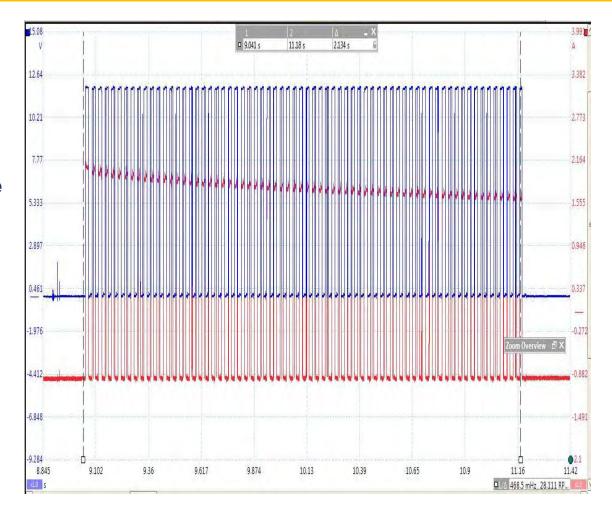
Transmission - Codes Only P1684 Battery was Disconnected

Instrument Cluster - CODES
Panel Dimmer Open

OBDII Codes (\$03)

P0031 HO2S Heater Control Circuit Low Bank 1 Sensor 1 P0037 HO2S Heater Control Circuit Low Bank 1 Sensor 2 P0051 HO2S Heater Control Circuit Low Bank 2 Sensor 1 P0057 HO2S Heater Control Circuit Low Bank 2 Sensor 2


- Wiring diagram shows that all O2 heaters are high-side driven by the PCM and have a constant ground
- □ Can an open ground cause a "heater circuit low" code?
- ☐ If not, what can?


- Scan data shows the sensors are operational
- □ Can the sensor voltages fall into the normal range without heater operation at idle?

- □ Scan tool has an O2 heater test for each sensor
- Test was run and each of the 4 sensors were able to reach the target 2.5-2.6v in the normal amount of time
- With the scope, verified the high-side driver is operational and neither the sensor or circuit are shorted to ground
 - Blue is high side driver
 - Red is 02 heater current
 - Measured @ PCM

- □ After seeing that there were no harness or sensor issues, the call was made of a faulty PCM
- After install and programming, no fault codes returned after several vehicle starts and the fuel smell concerns were gone Post Scan

Vehicle System Report

2005 Jeep Wrangler 4.0L L6 MPI 1J4FA44S95P358698 Odometer License

READINESS MONITORS

Confidence In Your Call

- ☐ In Diagnostics, Our Goals are:
- Prove the Good and Bad
- □ Document Your Findings
- □ Avoid Swapping New Parts for Testing
- □ Avoid Comebacks

Proving Good and Bad

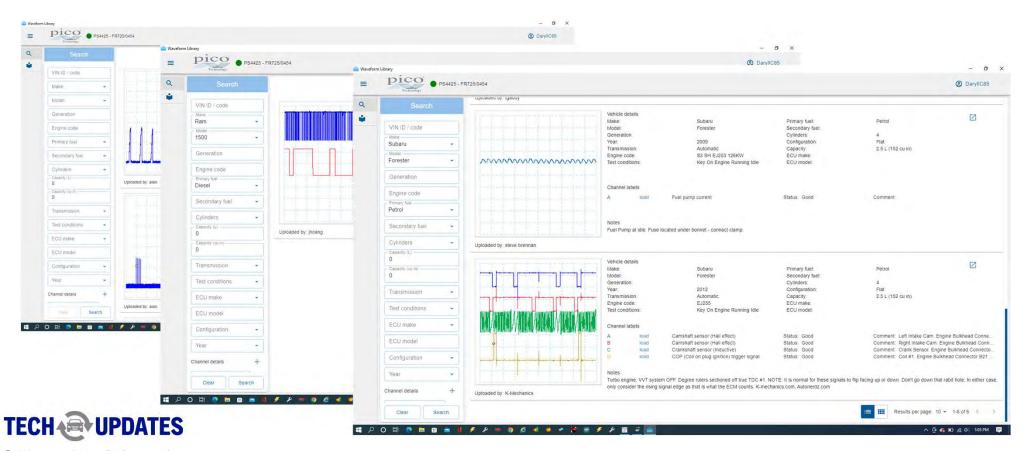
- What are some things that need to be known before calling a sensor good or bad?
 - Does the sensor have all it needs to operate?
 - Are all the circuits complete and healthy?
 - Has a sensor waveform measurement been taken?
 - Has the waveform been compared to a known good?
 - Where can I find a known good waveform?
 - What if I cannot find a good waveform example?

Known Goods

- ☐ Let's take a look into those last 3 questions:
- Having a known good example can have enormous value when diagnosing a sensor concern
- □ Several resources are available today including service information, scope companies, social media, free and paid websites, etc.

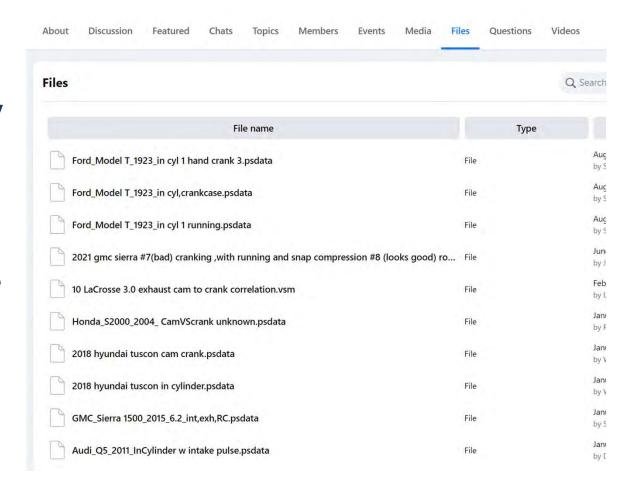
Service Info

- Some OE's have been publishing oscilloscope patterns in SI for many years and others following in recent years
- This example by Toyota is something they've offered for a long time
- ☐ This one is found by searching DTC P0335 CKP circuit
- ☐ They even provide the scope settings to use
- □ Also here is an image from Subaru related to a P0340 setting on a 2015 Crosstrek 2.0 DOHC engine


DTC No.	DTC Detection Condition	Trouble Area
P0335	Either condition is met: No crankshaft position sensor signal to ECM while cranking (1 trip detection logic). No crankshaft position sensor signal to ECM while engine running (1 trip detection logic). Missing crankshaft position sensor signal despite VVT sensor signal inputs normal after engine cranked (1 trip detection logic).	Open or short in crankshaft position sensor circuit Crankshaft position sensor Crankshaft position sensor plate ECM ECM
P0339	Under conditions (a), (b) and (c), no crankshaft position sensor signal is sent to the ECM for 0.05 seconds or more (1 trip detection logic). (a) Engine speed is 1000 rpm or more. (b) Starter signal is off.	Open or short in crankshaft position sensor circuit Crankshaft position sensor Crankshaft position sensor plate ECM

Reference: Inspection using an oscilloscope (VV1, VV2 and NE Signal Waveforms)

Pico Waveform Library

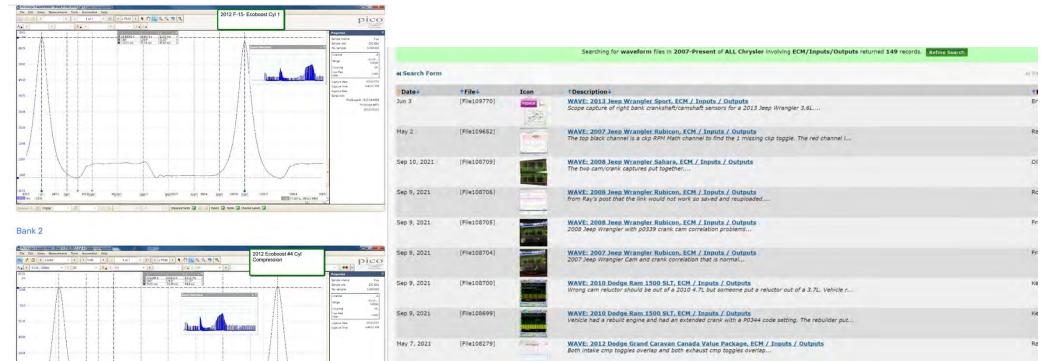


Social Media

- □ Social media is loaded with diagnostic discussion groups today
- These can be a great resource, at 0 cost, to look for a waveform to aid in diagnostics
- □ Here under "Files" there are several thousand files that users have taken and uploaded to help others

Websites and Paid resources

- □ There are many sites with waveform libraries available
- □ These typically have very wide vehicle coverage
- If a file is not available, you can submit a post looking for a particular file and



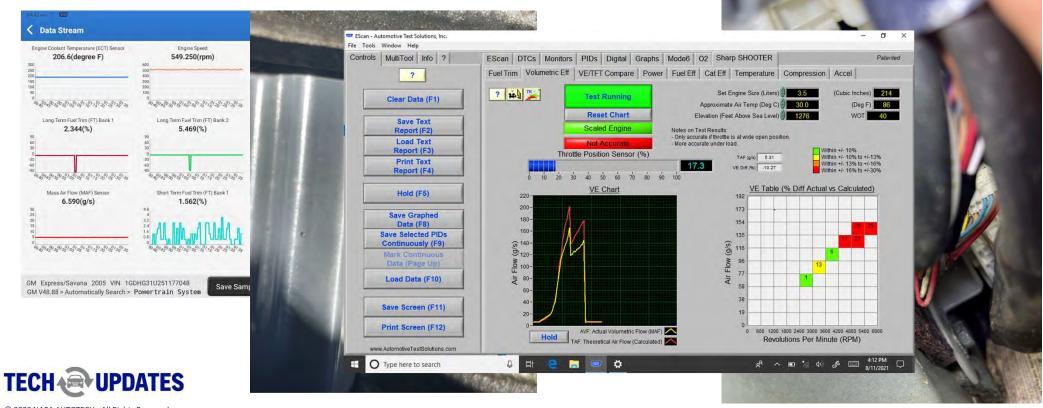
Access from Paid Sites examples

May 6, 2021

[File108277]

WAVE: 2017 Dodge Grand Caravan SE, ECM / Inputs / Outputs

Document Your Findings


- □ In the world of documenting, too much is never enough
- This includes:
 - Visual inspection and notes
 - Pre-scan
 - Test drive data capture (if needed)
 - Pictures/video
 - Service information
 - Scan data & Scope captures

Document Your Findings

Avoid Swapping New Parts for Testing

- ☐ It's often tempting to swap in a brand new part "because it's quicker"
- ☐ Even OE diagnostic procedures mention "replace with known good part and retest"
- □ Not only can this be a waste of time, but if nothing changes then all you've learned is what part isn't the problem

Avoid Swapping New Parts for Testing

- Depending on what part where the part came from, it may not be returnable
- □ Treat the diagnostic procedure the same whether the part cost is \$20 or \$2,000
 - Follow test procedures thoroughly
 - Verify circuit integrity
 - Prove that every other component and parameter involved is correct before calling for replacement

Avoid Comebacks

- ☐ Gather as much data as possible and document
- Clearly communicate your results
- NEVER replace a part based on a code alone!
- □ Repeat same tests after repair to verify that results have changed and are correct

Summary

- □ The goal of this class was to make sensor diagnostics easier by giving a better understanding of the various types and uses
- By using all of the resources available and being diligent in your process, there will be far less guess-work
- Understanding what part of test that the module is failing is also key to having a diagnostic approach

Summary

- With today's vehicle technology, and it's continuing to grow, specialized tooling is a must
- Between scan tools, multimeters, scopes, and other testing equipment, you can get the data you need to ensure a successful diagnostic
- ☐ Thank you for your time and attention

Top Reasons Invest Training

- Increase Job Satisfaction Levels
- Stay Ahead of the Competition
- Improve Customer Satisfaction

- Maintain and Increase Employee Knowledge and Skills
- Keep Up With the Latest Technology

ATMC Award Winning Courses

NAPA Autotech has received the National Excellence in Training Award from the Automotive Training Managers Council (ATMC) for various classes.

To be selected for this honor, organizations must meet a level of excellence in seven training categories including Learning Objectives, Program Materials, Measurement of the Program's Effectiveness and others.

800-292-6428 | support@napaautotech.com